ÖÐÎÄ   English   ¡¡
  µ±Ç°Î»ÖãºÊ×Ò³>>ʦ×ÊÁ¦Á¿>>ÖÐÐĽÌʦ
½ÌÊÚ
±«½¨º£ ³ÂÓÀ´¨
¸ÊÔÚ»á ¸ßά¶«
¼¾ Çà Àΰ
ÉÛ¾®º£ ÉòÈðÅô
ËïЦÌÎ ÌÆê»
Íõ·ïÓê Íô¸üÉú
Î⻪Ã÷ ÓàѶ
ÕÅÓ ÖÜÃ÷îå
×Ú´«Ã÷
¿Í×ù½ÌÊÚ
Peter Paule
¸±½ÌÊÚ
³ÂöÎ ´÷ áÔ
¹ù¼ÎÏé ºÎÁá
ºú¶þÑå »ÆÐË
¿µºÆ À軳ǫ
ÅËÓî ÌÆÅô·É
ÌïÎÄÒå κ»ªÓ°
ÑîËÉ ÓÚÏè
Öìì³
½²Ê¦
·¶ÒÝè¯ Áõ¹Ú»ª
Ëλù½¨ ÍõÃÈ
Îâ±ü½Ü ÐìÈó¶«
ÕÅÓî
²©Ê¿ºó
ÕÔÞÈ 2024-2027
°ì¹«ÊÒ
ÁõÑô Âí³¤Ó¨
ÖÓСƽ
ÌÆÅô·É ¸±½ÌÊÚ    
Ó¦ÓÃÊýѧÖÐÐĽÌʦ Ö÷ Ò³£º
  µç »°£º
  ÓÊ Ï䣺 pengfei_tang@tju.edu.cn

Ñо¿·½Ïò£º

ÀëÉ¢¸ÅÂÊÂÛÓëͳ¼ÆÎïÀí

½ÌÓý¾­Àú£º

¡¡¡¡2014.08-2020.07 ÃÀ¹úÓ¡µÚ°²ÄÉ´óѧ Êýѧϵ Ñо¿Éú/²©Ê¿

¹¤×÷¾­Àú£º

¡¡¡¡2020.08-2023.06 ÒÔÉ«ÁÐÌØÀ­Î¬·ò´óѧ ²©Ê¿ºó
¡¡¡¡2023.08-ÖÁ½ñ Ìì½ò´óѧӦÓÃÊýѧÖÐÐÄ ¸±½ÌÊÚ

´ú±íÐÔÂÛÎÄÓëÖø×÷£º

[1] Tang P. A note on some critical thresholds of Bernoulli percolation[J]. Electronic Journal of Probability, 2023, 28: 1-22.

[2] Tang P. Return probabilities on nonunimodular transitive graphs[J]. Electronic Journal of Probability, 2022, 27: 1-27.

[3] Tang P. Weights of uniform spanning forests on nonunimodular transitive graphs[J]. Electronic Journal of Probability, 2021, 26: 1-62.

[4] Hu, Y., Lyons, R. and Tang P. (2021). A reverse Aldous-Broder algorithm. Ann. Inst. H. Poincar¨¦ Probab. Statist. 57(2): 890-900.

[5] Tang P. Heavy Bernoulli-percolation clusters are indistinguishable[J]. The Annals of Probability, 2019, 47(6): 4077-4115.

[6] Damron M, Tang P. Superlinearity of geodesic length in 2D critical first-passage percolation. Sojourns in Probability Theory and Statistical Physics - II. 2019: 101-122.

Baidu
map